1960

lation wes then obtained for Q:

o(e®)y o

where

r=relaxation time
wo=resonant angular frequency=2xr
Xresonant frequency in cycles per
second
wm=voMo= uog(e/2m)M,= 2wfym = angu-
lar frequency corresponding to the
magnetization, in which

wo=intrinsic permeability of free space
==1.256 X 1078 henries per meter

g=Landé g factor=22.00 for electrons
in most ferrites
e/m=ratio of charge, ¢, to mass, m, of
electron =1.759X 10" coulombs/kg
My=saturation magnetization of ferrite,
amperes per meter.

This new formula for Qu given above pre-
dicts that a value of Q,=0 should occur at
wo=wn/3, thereafter increasing linearly with
increasing frequency, provided that 7 is inde-
pendent of frequency. According to the
equation for Q. derived using the Lax
formula, the variation of Qy is described by
a straight line which intersects the origin,
Qu=0at fo=0. These two relations given by
(1) and (2) are shown in Fig. 1 for the case
7=2X10"7. The only qualification that
must be applied to these formulas is that
the material must be fully magnetized. For
a spherical shape this requires that the oper-
ating frequency should be somewhat greater
than wo=wn/3=70H, since a sphere be-
comes unsaturated at biasing fields of this
magnitude For single crystal yttrium-iron-
garnet this “saturation frequency” occurs at

fo=fm/3=1670 Mc.
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It is possible to reinterpret Lax’s sus-
ceptibility formula so that it now becomes
the same as the new formula. This is done
by substituting for = in Lax’s equation a new
relaxation time (wp— Nywom)7/wo, where N, is
the z-demagnetizing factor. In the case of
the sphere, N,=1. However, the new for-
mula is obtained straightforwardly from the
Bloch-Bloembergen equation of motion, and
the equivalent circuit interpretation, with-
out the artificial introduction of a relaxation
time which in turn depends on a demagnetiz-
ing factor.

Measurements were made of the Q of a
highly polished spherical single crystal of
yttrium-iron-garnet, using the method de-

Correspondence

scribed by Ginztonf The yttrium-iron-
garnet sphere was mounted in a short-
circuited waveguide or transmission line
near the short circuited end. A 0.064-inch
diameter single crystal yttrium-iron-garnet
sphere was used in these measurements.

The experimental values of Q, are shown
as points in Fig. 1. An approximate fit to
these data is given by the “dash-dot” curve.
The lower frequency portion of this experi-
mental curve between 1.67 kMc and about
5 kMc is a straight line which can be repre-
sented by the new formula, assuming
7=2.5X10"" In this low frequency region
at least, the data appear to support the new
formula for Q.. At higher frequencies the ex-
perimental curve for Q. flattens off and,
above about 8 kMc, Q. decreases with in-
creasing frequency.

It is planned to publish a complete anal-
ysis and discussion of these and other re-
lated data in the near future.

P. S. CARTER, JR.

C. FLAMMER
Stanford Res. Inst.
Menlo Park, Calif.

6 Edward L. Ginzton, “Microwave Measure-
ments,” in “Microwave Measurements,” McGraw-
Hill Book Co., Inc., New York, N. V,, ch. 9, pp.
391-434; 1957,

A Note on the Derivation of the
Fields in a Radial Line*

The concept of a radial transmission line
is frequently used in the description of such
devices as cylindrical cavity resonators and
horn radiators. An approach!™ to the prob-
lem of determining the electric and mag-
netic fields in the radial line has been to
solve Maxwell's equations in. component
form with appropriate boundary conditions.
While the following derivation yields noth-
ing new, it does, however, have the advan-
tages of being simple and of requiring a mini-
mum of guess work as compared to other
methods of solving this problem.

The technique employed here is based
on the factt that the general solution of the
vector Helmholtz equation

V2AG) + k2AG) =0 (1)

consists of a linear combination of three
vector functions generated in turn from

* Received by the PGMTT, June 10, 1960. This
work was supported in part by the U. S. Army Signal
Engrg. Labs., Fort Monmouth, N. J., under Contract
DA 36-039 sc 78254,

1S, A. Schelkunoff, “Electromagnetic Waves,”
D. Van Nostrand Co., Inc., New York, N. Y., pp.
260-275; 1943.

2 H, R. L. Lamont, “Wave Guides,” Methuen and
Co. Ltd., London, Eng., pp. 19-23; 1942.

3 C. G. Montgomery, R. H. Dicke, and E. M.
Purcell, “Principles of Microwave Circuits,” McGraw-
HgiilgBOOk Co., Inc., New York, N. V., pp. 252-254;
1

+P. M. Morse and H. Feshbach, “Methods of
Theoretical Physics,” McGraw-Hill Book Co., Inc.,
New York, N. Y. pp. 1764-1767; 1953.
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three scalar functions:
_L®) = Vo)
M@ =V X [w@)]

M) = VXV [ixtr)].

The vector % is a constant vector and ¢,
¢ and x are each solutions of the scalar
Helmholtz equation; e.g., V2¢(7)+k2¢(¥) =0.

Consider the geometry shown in Fig. 1.
The region of interest is the semi-infinite
space between the perfectly conducting,
parallel bounding surfaces at z=0 and z=5.
Assume that the fields have a time de-
pendence of the form ¢! and that no free
charge exists in the region between the
bounding surfaces. Subject to these condi-
tions, the electric and magnetic fields in the
region 0<Lz<b must satisfy an equation of
the same form as (1) with k2= —vyg?
=w?ue[l —j(o/we)] where o, € and p are re-
spectively the conductivity, permittivity
and permeability of the medium between
the surfaces and w is the radian frequency.

R

Fig. 1—A radial transmission line consisting
of two parallel conducting planes.

Because_of the manner in which they are
defined, M and N are solencidal as are Jf and
H in this case, and it follows that the M and
N solutions for (1) could correspond to
either the electric or the magnetic field de-
pending upon the choice of boundary con-
ditions at 2=0 and 2=b. _

As an illustration let us require that M
and N satisfy the boundary conditions for
the electric field, namely, #XM =AXN =0.
Writing the M solution in_terms of the unit
vector in the z-direction, M =V X[da(7, 6, 2)],
and applying the boundary conditions after
solving the scalar Helmholtz equation by
the standard approach of separating vari-
ables leads to

B =M =V X gﬁz[mmw

+ K V(1) Je¥im? sin ( ? Z)g
myn=0,1,2.+. (2)

K; and K, are arbitrary constants which
specify the amplitude of the field. J,,and ¥,
are the Bessel functions of the first and
second kind respectively and g2= —v¢?
—(nw/b)2 In this case, K2 must be equal to
zero because of the singularity of YV.(8r) at
r=0, but if the region of interest is that for
which #>7,520, then K:; need not be zero.
The corresponding magnetic field can be
found from

VX Em,n = _jwl"«ﬁm,n- 3)
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The fields obtained from (2) and (3) are the
so-called “transverse” electric fields since
E.(m, n) vanishes. _

Following an identical procedure, the N
solution leads to

lL/m,n = j‘in,n = - :Z“7 X \% X
Yo

+ K4V (ﬁr)]ei””" [ (? z) %

mom=0,12+--.

3 K aTn(Br)

@

Again the corresponding magnetic field,
H’,..n, can be found using (3). These fields
are the so-called “transverse” magnetic
fields since H'znmy=0.

It is also possible to derive the magnetic
fields from the M and N solutions by re-
quiring that #-M =7-N=0 at 5=0 and
z=b, and then use (3) to determine the
components of the electric fields.

JoserH F. DIENST
Microwave Electronics Lab.
College of Engrg.

Rutgers, the State University
New Brunswick, N. J.

Surface Waves on Symmetrical
Three-Layer Sandwiches*

The theory of surface waves on plane di-
electric slabs has been presented by Plum-
mer and Hansen.! Additional numerical re-
sults are shown in Figs. 1 and 2 for the
lowest order TM and TE modes that can
exist on a grounded dielectric slab. The slab
has thickness d;, and a relative dielectric
constant of 4. It is separated by an air gap
of thickness @ from the ground plane. ¢/v
represents the ratio of the velocity of light
in free space and the phase velocity of the
surface wave. By image theory, these modes
(TM,; and TE;) can also exist on a sym-
metrical, three-layer, air-core sandwich to
which the given numerical data also apply.

Figs. 3 and 4 show similar data for the
TM; and TE, modes. These modes dis-
appear if a ground plane is inserted at the
center of the sandwich. For this reason,
these modes are usually ignored in the
literature.

The fields of a surface wave decay as
e~2*, with distance from the surface of the
plane structure. The attenuation constant
a, is not independent but is directly related
to the phase velocity by (alo)2=4n?
[(¢/v)2—1], as shown in Fig. 5. This may be
called a universal curve of a\o vs ¢/v, be-
cause it applies to TE and TM modes on
any lossless plane structure.

The results mentioned were obtained
under a project sponsored by the Air Re-
search and Development Command, USAF.

J. H. RicaMoND

Antenna Lab.

The Ohio State University
Columbus, Ohio

* Received by the PGMTT, June 20, 1960.
1 R, Plummer and R. Hansen, Proc. IEE, pt, C,
mono. 238R; May, 1957.
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Fig. 1—Phase velocity ratio vs core thickness for the

My mode on an air-core sandwich. (Data also

apply to a single slab over a ground plane, with an
air space.)
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Fig. 3—Phase velocity ratio vs core thickness for the
M mode on an air-core sandwich.
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Fig. 2—Phase velocity ratio vs core thickness for the
TE1mode on an air-core sandwich. (Data also apply
to a single slab over a ground plane, with an air
space.)
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Fig. 4—Phase velocity ratio vs core thickness for the
TEo mode on an air-core sandwich.
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Fig, 5—Universal curve of ado vs ¢/7.



