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lation wsmthenobtainedfor Qu:

where

coo= resonant angular frequcncy=2~
Xresonaut frequency in cycles per

second

OJm= -iOMO = pOg(e/2wz)Mo = 2rrfrn = angu-

lar frequency corresponding to the
rnagnetizatiou, in which

PO= intrinsic permeability of free space
,= 1.256X 10–8 henries per meter

g = 1.and6 g factorS%2 .00 for electrons
in most ferrites

e/wr = ratio of charge, e, to mass, m, of

electron = 1.759X 1011 coulombs/kg

MO= saturation magnetization of ferrite,
amperes per meter.

This new formula for Qu given above pre-

dicts that a value of Q.= O should occur at

WI= COJ3, thereafter increasing linearly with
increasing frequency, provided that ~ is inde-

pendent of frequency. According to the

equation for Qti derived using the Lax
formula, the variation of Qu is described by

a straight line which intersects the origin,

Q. =0 at .fO= O. These two relations given by
(1) and (2) are shown in Fig. 1 for the case
T=2x10--7. The only qualification that
must be applied to these formulas is that
the material must be fully magnetized. For
a spherical shape this requires that the oper-
ating frequency should be somewhat greater

than ao =c.AJ3 = YoHO, since a sphere be-

comes unsaturated at biasing fields of this
magnitude For single crystal yttrium-iron-

garnet this “saturation frequency” occurs at

‘o =.fm/3 = 1670 kp C.

Fig. 1

It is possible to reinterpret Lax’s sus-
ceptibility formula so that it now becomes
the same as the new formula. This is done

by substituting for 7 in Lax’s equation a new
relaxation time (CJO— N,ti~ )r/rJO, where N. is

the z-demagnetizing factor. In the case of
the sphere, N,= +. However, the new for-
mula is obtained straightforwardly from the
Bloch-Bloembergen equation of motion, and

the equivalent circuit interpretation, with-

out the artificial introduction of a relaxation
time which in turn depends on a demagnetiz-
ing factor.

Measurements were made of the Qti of a
highly polished spherical single crystal of
yttrium-iron-garnet, using the method de-

scribed by Ginzton.t The yttrium-iron-

garnet sphere was mounted in a short-

circuited waveguide or transmission line

near the short circuited end. A 0.064-inch

diameter single crystal yttrium-iron-garnet
sphere was used in these measurements.

The experimental values of Qu are shown
as points in Fig. 1. An approximate fit to
these data is given by the “dash-dot” curve.
The lower frequency portion of this experi-
mental curve between 1.67 kMc and about

5 kMc is a straight line which can be repre-

sented by the new formula, assuming
~ =2.5x 1o–7. In this low frequency region

at least, the data appear to support the new

formula for Qu. At higher frequencies the ex-

perimental curve for Q. flattens off and,
above about 8 kMc, Qti decreases with in-
creasing frequency.

It is planned to publish a complete anal-
ysis and discussion of these and other re-
lated data in the near future.
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A Note on the Derivation of the

Fields in a Radial Line*

The concept of a radial transmission line
is frequently used in the description of such

devices as cylindrical cavity resonators and
horn radiators. An approach’–’ to the prob-
lem of determining the electric and mag-

netic fields in the radial line has been to
solve Maxwell’s equations in component
form with appropriate boundary conditions.

While the following derivation yields noth-
ing new, it does, however, have the advan-
tages of being simple and of requiring a mini-

mum of guess work as compared to other
methods of solving this problem.

The technique employed here is based

on the fact4 that the general solution of the
vector Helmholtz equation

V,j (7) + /#’/~@) = () (1)

consists of a linear combination of three
vector functions generated in turn from
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three scalar functions:

Z(7) = V@(?)
m(?)= v x [all(?)]

m(?)= ;V x v x [ZZX(7)].

The vector ti is a constant vector and O,
$ and x are each soluticms of the scalar
Helmholtz equation; e.g., v’~(~) +k’@(r) = O.

Consider the geometry shown in Fig. 1.
The region of interest is the semi-infinite

space between the perfectly conducting,
parallel bounding surfaces at z = O and z = b.
Assume that the fields have a time de-

pendence of the form s+t and that no free

charge exists in the region between the

bounding surfaces. Subject to these condi-
tions, the electric and magnetic fields in the
region O<z <b must satisfy an equation of

the same form as (1) with k’= –Y02
= 0J2.Udl —j”(u/oJe)] where u, e and p are re-
spectively the conductivity, permittivity
and permeability of the medium between

the surfaces and co is the radian frequency.

Fig. 1—A radial transmission line consisting;
of two parallel conducting planes.

Because~f the_manner in which the> are

~efined, M and N are soleno,idal as are~ and

~ in this case, and it follows that the ~ and

N solutions for (1) could correspond to
either the electric or the magnetic field de-
pending upon the choice of boundary con-

ditions at z =0 and z = b.
A~an illustration let us, require that ~

and N satisfy the boundary ~onditio~s for

the electric tiid, namely, ‘hX~ =flxN = O.

Writing the ~ solution ~terrns of the unit
vector in the z-direction, ~ ==VX [z2r$(y, 0, z)],
and applying the boundary conditions after

solving the scalar Helmholtz equation by
the standard approach of separating vari-

ables leads to

vz, ?z=lo, l,’.... (2)

Ki and Kg are arbitrary constants which

specify the amplitude of the field. 1~ and 11~
m-e the Bessel functions of the first and
second kind respectively and @z= -- T02

–(mr/b)’. In this case, K.z must be equal to

zero because of the singularity of YJ&) at
? = O, but if the region of interest is that for
which ?~ TO# O, then KZ need not be zero.
The corresponding magnetic field can be
found from

v x Em,.= – j+ld%,m. (3)
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The fields obtained from (2) and (3) are the

so-called ‘transverse” electric fields since
E,(WZ, n) vanishes.

Following an identical procedure, the ~

solution leads to

\
D’EL,n = m.,. = – ;V x v x tiJK3LJM

??Z,W = 0,1,2.... (4)

&gain the corresponding magnetic field,

H’~,., can be found using (3). These fields
are the so-called “transverse” magnetic

fields since H’z(n,fi) = O.
It is also possible to &rive the magnetic

fields from the ~ and N solutions by re-

quiring that fi.~=?? .~=O at z=O and
z= b, and then use (3) to determine the
components of the electric fields.

JOSEPH F. DIENST
Microwave Electronics Lab.

College of Engrg.
Rutgers, the State University

New Brunswick, N. J.

Surface Waves on Symmetrical

Three-Layer Sandwiches*

The theory of surface waves on plane di-

electric slabs has been presented by Plum-
mer and Hansen.l Additional numerical re-

sults are shown in Figs. 1 and 2 for the
lowest order TM and TE modes that can

exist on a grounded dielectric slab. The slab
has thickness d., and a relative dielectric

constant of 4. It is separated by an air gap
of thickness a from the ground plane. C/IJ

represents the ratio of the velocity of light
in free space and the phase velocity of the
surface wave. By image theory, these modes
(TMO and TEI) can also exist on a sym-
metrical, three-layer, air-core sandwich to
which the given numerical data also apply.

Figs. 3 and 4 show similar data for the
TMI and TEo modes. These modes dis-

appear if a ground plane is inserted at the
center of the sandwich. For this reason,
these modes are usually ignored in the

literature.
The fields of a surface wave decay as

e–a”, with distance from the surface of the
plane structure. The attenuation constant

a, is not independent but is directly related
to the phase velocity by (a~,)’ = 4rr2
[(c/u)’ – 1], as shown in Fig. 5. This may be
called a universal curve of ako vs c/v, be-
cause it applies to TE and TM modes on
any lossless plane structure.

The results mentioned were obtained
under a project sponsored by the Air Re-
search and Development Command, USAF.
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Antenna Lab.
The Ohio State University

Columbus, Ohio
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Fig. l—Phase velocity ratio vs core thickness for the
TMo mode on an air-core sandwich. (Data also
aPPly to a single slab over a ground plane, with an
alr space. )
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Fig. 3—Phase velocity ratio vs core thickness for the
TMI mode on an air-core sandwich.
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Fig. 2—Phase velocity ratio vs core thickness for the
TEI m?de on an air-core sandwich. (Data also apply
to a surgle slab over a ground plane, with an air
space. )
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Fig. 4—Phase velocity ratio vs core thickness for the
TEo mode on an air-core sandwich.
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Fig. 5—Universal curve of do vs cI?J.


